Deep Learning-Based Meta-Modeling for Multi-Objective Technology Optimization of Electrical Machines
نویسندگان
چکیده
Optimization of rotating electrical machines is both time- and computationally expensive. Because the different parametrization, design optimization commonly executed separately for each machine technology. In this paper, we present application a variational auto-encoder (VAE) to optimize two technologies simultaneously, namely an asynchronous permanent magnet synchronous machine. After training, employ deep neural network decoder as meta-models predict global key performance indicators (KPIs) generate associated new designs, respectively, through unified latent space in loop. Numerical results demonstrate concurrent parametric multi-objective technology high-dimensional space. The VAE-based approach quantitatively compared classical learning-based direct KPIs prediction.
منابع مشابه
Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Multi-Objective Optimization of Support Vector Machines
Designing supervised learning systems is in general a multi-objective optimization problem. It requires finding appropriate trade-offs between several objectives, for example between model complexity and accuracy or sensitivity and specificity. We consider the adaptation of kernel and regularization parameters of support vector machines (SVMs) by means of multi-objective evolutionary optimizati...
متن کاملMulti-Objective Deep Reinforcement Learning
We propose Deep Optimistic Linear Support Learning (DOL) to solve highdimensional multi-objective decision problems where the relative importances of the objectives are not known a priori. Using features from the high-dimensional inputs, DOL computes the convex coverage set containing all potential optimal solutions of the convex combinations of the objectives. To our knowledge, this is the fir...
متن کاملUnified Backpropagation for Multi-Objective Deep Learning
A common practice in most of deep convolutional neural architectures is to employ fully-connected layers followed by Softmax activation to minimize cross-entropy loss for the sake of classification. Recent studies show that substitution or addition of the Softmax objective to the cost functions of support vector machines or linear discriminant analysis is highly beneficial to improve the classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3307499